Selective regulation of neurosteroid biosynthesis under ketamine-induced apoptosis of cortical neurons in vitro

نویسندگان

  • JIANLI LI
  • YANG YU
  • BEI WANG
  • HONGHAI WU
  • GAI XUE
  • YANNING HOU
چکیده

Numerous studies have suggested that ketamine administration can induce neuroapoptosis in primary cultured cortical neurons. Neurosteroids modulate neuronal function and serve important roles in the central nervous system, however the role of neurosteroids in neuroapoptosis induced by ketamine remains to be elucidated. The present study aimed to explore whether neurosteroidogenesis was a pivotal mechanism for neuroprotection against ketamine-induced neuroapoptosis, and whether it may be selectively regulated under ketamine-induced neuroapoptosis conditions in primary cultured cortical neurons. To study this hypothesis, the effect of ketamine exposure on neurosteroidogenesis in primary cultured cortical neurons was investigated. Cholesterol, a substrate involved in the synthesis of neurosteroids, was added to the culture medium, and neurosteroids were quantified using high-performance liquid chromatography-tandem mass spectrometry analysis. The data demonstrated that cholesterol blocked ketamine-induced neuroapoptosis by promoting the synthesis of various neurosteroids, and the pathway of neurosteroid testosterone conversion into estradiol was inhibited by ketamine exposure. These data suggest that endogenous neurosteroids biosynthesis is critical for neuroprotection against ketamine-induced neuroapoptosis and inhibiting the biosynthesis of neuroprotective-neurosteroid estradiol is of notable importance for ketamine-induced neuroapoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats

Objective(s):Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have b...

متن کامل

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Possible mechanism of tolerance to ketamine-induced blockade of cortical spreading depression

Ketamine (KET) induced blockade of cortical spreading depression (CSD) declines with repeated KET applications in a way suggesting the development of tolerance. Possible mechanism of this process was studied in 31 rats anestheized with pentobarbital. CSD was elicited by injection of 1µl of 5% KCl into cortex at 15 min intervals and monitored by recording the accompanying slow potential waves....

متن کامل

C-terminal fragments of APP: Its neurotoxic mechanisms and involvement in gene transcription

Several lines of evidence suggest that some neurotoxicity in AD is due to proteolytic fragments of APP. In this study, we compared the potency of neurotoxicity induced by CT with that of A-beta neurotoxicity and our results showed that various CT peptide fragments (CTFs; CTF99, AICD, CTF31) caused neurotoxicity in cultured cells and primary cortical neurons, induced strong non-selective inward ...

متن کامل

Neurosteroid allopregnanolone attenuates high glucose-induced apoptosis and prevents experimental diabetic neuropathic pain: in vitro and in vivo studies.

Hyperglycemia plays a critical role in the development of diabetic neuropathy. Hyperglycemia induces oxidative stress in neurons, resulting in neuronal cell apoptosis and dysfunction. Anti-apoptotic properties of neurosteroids have been demonstrated in numerous cellular models of neurodegenerative studies. Here, the protective effects of neurosteroid allopregnanolone were investigated in in vit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2016